Lecture Note: Probabilities, Energy, Boltzmann & Partition Function
pdf Probabilities & Energy.
Please subscribe to this mailing list.
See my general teaching page for previous versions of this lecture.
This lecture introduces to modern methods in Machine Learning,
including discriminative as well as probabilistic generative models. A
preliminary outline of topics is:
date | topics | slides | exercises (due before the lecture) |
16.4. | Introduction | 01-introduction | NO TUTORIALS in the first week |
23.4. | Regression | 02-regression | e01-intro |
30.4. | Classification | 03-classification | e02-linearRegression
../data/dataLinReg2D.txt ../data/dataQuadReg2D.txt ../data/dataQuadReg2D_noisy.txt |
7.5. | Regression & Classification (cont'd) |
NO TUTORIALS (change of rhythm) |
|
14.5. | HOLIDAY | e03-classification
../data/data2Class.txt (due on May 11 & 13) |
|
21.5. | SVMs | 04-MLbreadth | e04-kernelsAndCRFs
(due on May 18 & 20) |
29.5. | HOLIDAY | HOLIDAY | |
4.5. | HOLIDAY | e05-SVM
(discussed on June 1 & 3) |
|
11.6. | Unsupervised Learning | e06-NN
(discussed on June 8 & 10) |
|
18.6. | Clustering | e07-NN
../data/data2ClassHastie.txt |
|
25.6. | Bootstrap estimates & Boosting | e08-PCA | |
2.7. | Bayesian Learning |
05-probabilities
06-BayesianRegressionClassification 07-graphicalModels 08-graphicalModels-Learning |
e09-clustering |
9.7. | e10-weka-scikit | ||
16.7. | e11-Bayes-GPs | ||
23.7. | SUMMARY | 15-MachineLearning-script | e12_EM_graphicalModel |
pdf Probabilities & Energy.
Die gängigen Erklärungen zu “Was ist Informatik?” – etwa von der Gesellschaft für Infomatik, der TU Dresden, oder auf Wikipedia – machen es einem schwer, sic...