Lecture Note: Probabilities, Energy, Boltzmann & Partition Function
pdf Probabilities & Energy.
Please subscribe to this mailing list.
See my general teaching page for previous versions of this lecture. The 2015 lists the contents and extra material of the lecture. Here I'll only put the updated slides and exercises online.
The tutorials on Monday 4th are skipped. The first lecture is is April 7th, V38.02, 11:30.
date | topics | slides | exercises (due on following Monday) |
7.4. | Introduction | 01-introduction | e01-intro |
14.4. | Regression | 02-regression | e02-linearRegression
../data/dataLinReg2D.txt ../data/dataQuadReg2D.txt ../data/dataQuadReg2D_noisy.txt |
21.4. | Classification & Structured Output | 03-classification | e03-classification |
28.4. | e04-classification
../data/data2Class.txt |
||
5.5. | holiday | e05-structuredOutput
../data/dataMixedCRF.txt |
|
12.5. | Kernelization & Structured Input | 04-kernelization
05-MLbreadth |
e06-kernels (due on May 23rd) |
2.6. | Neural Networks | e07-NN
(due on June 6th) ../data/data2Class_adjusted.txt |
|
9.6. | Clustering | e08-PCA | |
16.6. | Boosting | e09-clustering
../data/mixture.txt |
|
23.6. | Bayesian ML | 06-BayesianRegressionClassification | e10-boosting-bayes |
30.6. | COLLECTED SLIDES | 16-MachineLearning | Open questions & Präzenzübung: e11-gaussianProcesses |
Slides of the previous year:
pdf Probabilities & Energy.
Die gängigen Erklärungen zu “Was ist Informatik?” – etwa von der Gesellschaft für Infomatik, der TU Dresden, oder auf Wikipedia – machen es einem schwer, sic...