Was ist Informatik? – Eine andere Sichtweise
Die gängigen Erklärungen zu “Was ist Informatik?” – etwa von der Gesellschaft für Infomatik, der TU Dresden, oder auf Wikipedia – machen es einem schwer, sic...
See my general teaching page for previous versions of this lecture. Esp see the compiled slides for an overview.
The tutorials on Monday, Apr 8 are cancelled. The first lecture is on Thu, Apr 11, 14:00, hall V38.04.
Ü1 -- Mo 09:45 -- room V7.03 -- Janik
Ü2 -- Mo 11:30 -- room V7.03 -- Janik
Ü3 -- Mo 14:00 -- room 0.124 -- Marc -- special session for data science students
Ü4 -- Mo 17:30 -- room V38.04 -- Philipp
date | topics | slides | exercises (due on following Monday) |
11.4. | Introduction | 01-introduction | e01-intro |
18.4. | Regression | 02-regression | holiday |
25.4. | Classification | 03-classification | e02-linearRegression
../data/dataLinReg2D.txt ../data/dataQuadReg2D.txt ../data/dataQuadReg2D_noisy.txt |
2.5. | Classification | e03-classification | |
9.5. | Neural Networks | 04-neuralNetworks | e04-classification
../data/data2Class.txt |
16.5. | Neural Networks | e05-NN | |
23.5. | Kernelization | 05-kernelization | e06-tensorFlow |
30.5. | (holiday) | e07-kernels | |
6.6. | Unsupervised Learning | 06-unsupervised | e08-PCA |
20.6. | (holiday) | e09-clustering
../data/mixture.txt |
|
27.6. | Lazy Learning & Boosting | 07-localLearning-ensembles | e10-knn-boosting
../data/data2ClassHastie.txt |
4.7. | Probabilistic ML | 08-probabilisticML
10-probabilities |
e11-gaussianProcesses |
11.7. | Probabilistic ML | e12-bonus | |
18.7. | Summary & Q&A with tutors | 11-recap |
Use the table of contents as an overview. Topics we skipped or discussed only vert briefly are marked **, and are not relevant for the exam.
See page 137!
Here is an example exam from before 2016: ../16-MachineLearning/beispielKlausur
Die gängigen Erklärungen zu “Was ist Informatik?” – etwa von der Gesellschaft für Infomatik, der TU Dresden, oder auf Wikipedia – machen es einem schwer, sic...